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Abstract. Resistivity in the Anderson alloy system is calculated using the extended slave- 
boson mean field theory developed by Xu and Li. We find that the value of the peak 
of resistivity as a function of concentration of magnetic ions is very close to that of the 
experimentally observed Nordheim law. As the condition of the coherent potential approxi- 
mation (CPA) violates the dual symmetry, resistivity is not symmetric with respect to the 
point of half concentration. The concentration of the peak is close to that of the previous 
Yoshimori-Kasai result. The fact that this feature may be intrinsic to the formalism of the 
single-site CPA is discussed. 

1. Introduction 

It is known that the alloy system of magnetic and non-magnetic ions shows a rich variation 
in low temperature electronic properties [ 11. With an increasing concentration of mag- 
netic ions, the system changes from the dilute Kondo system, through the dense Kondo 
system, and finally to the Kondo lattice. This change is reflected in various physical 
quantities. For the transport, the Nordheim law has been observed in the residual 
resistivity p at T = 0 K, for instance in Ce,La, -xCu2Si2 [2] and Ce,La, -$u6 [3]. It varies 
as p = pox( 1 - x ) ,  where pa is the single-impurity resistivity. 

There are a few examples of theoretical calculations of the residual resistivity, for 
instance by Yoshimori and Kasai [4]. They extended the finite-U single-impurity theory 
to the alloy system making use of the single-site version of the coherent potential 
approximation (CPA) [5]. However, this approximation has been applied by many 
authors to calculating the density of states of the Anderson alloy system, but different 
approximation schemes for strong correlation among electrons have been used, For 
example, the one-dimensional Anderson alloy, with a finite strength for the Coulomb 
repulsion, is analysed [6], and the slave-boson mean field theory is extended to the alloy 
system [7]. 

In this paper, we calculate residual resistivity making use of the extended slave- 
boson mean field theory of Xu and Li [7]. Mean field parameters and the coherent 
potential are computed self-consistently as functions of the concentration of magnetic 
ions. Electric resistivity is calculated at T = 0 K. We find that the value of the peak of 
resistivity is very close to that of the Nordheim law. As the condition of the CPA 
violates the dual symmetry, resistivity is not symmetric with respect to the point of 
half concentration. Comparison with the Yoshimori-Kasai result is made and possible 
directions for the revision of the theory are discussed. 
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In the next section, the application of the single-site CPA to the mean field theory of 
the Anderson alloy is reviewed and the formula for resistivity is given. In section 3, we 
present numerical results and discuss the findings. 

2. Formalism 

The slave-boson technique [8] for the infinite-U Anderson impurity and lattice models 
can also be applied to the Anderson alloy model. We consider, in particular, the alloy 
system where Ce and La are located at the magnetic and non-magnetic sites, respectively. 
The Hamiltonian is 

= CI [Ei(-EJ + (1 - Ei)ErL"]f;b.fiu f C EkCLoCko + V C  Ei(b:cLfio +fLciubi) 
iu ko  io 

where Ei is a random variable which is defined as 

if the atom of the ith site is Ce 

The variable f i U  annihilates an f electron with spin CJ at the ith site. The energy of an f 
electron at the Ce site is -Ef, where the relation Ef > 0 is assumed. In the course of the 
calculation, the limit E,L" + = is taken in order to ensure that there are no f electrons at 
the La site. The quantity cko is an annihilation operator of the conduction electron with 
the momentum k and spin 0, It is connected to c,, via the relation 

c,, = ~ - 1 ' 2  2 exp(ik - R,)ck,. 
k 

Constant density of states per site is assumed for the conduction electrons; the value is 
1/20 for - D < &k < D ,  and zero, otherwise. The operator b, annihilates the slave boson 
that is introduced in order to exclude double occupancy off electrons at the Ce site. The 
condition of infinite strength of the repulsive force is represented by the last term of 
(2.1); the constraint 

cf&flU + b:b,  = 1 (2.3) 
U 

is added with the Lagrange multiplier Ai. 
The CPA [5]  has been applied successfully [7] to calculate the electronic density of 

states of the Anderson alloy system with the ansatz of the mean field approximation: 
(b , )  = rand Ai = 13. for all i. We apply the same formalism to calculate the resistivity. The 
only difference is in the number of the conduction bands; in [ 7 ] ,  they assumed two 
conduction bands. 

In the mean field theory, equation (2.1) is rewritten as 
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where the effective f level is defined as Ef = -Ef + A, and YLo is a two-component 
operator: 

We define a matrix propagator of the uniform system as 

Its Fourier transform with respect to the imaginary time t is 

where CO, = (2n + 1)nTisthe odd Matsubarafrequency. When the potential fluctuations 
at Ce and La sites are expressed by 

6Vce= (" 
rV 0 

and 

(2. Sa) 

(2.8b) 

we write the condition of the single-site CPA as 

c(SVce - Z)[1 - g(SVce - Z)]-' + (1 - c)(SVL, - Z) [l - g(SV,, - Z)]-' = 0 (2.9) 

where cis the Ce concentration, the coherent potential Z is given in a 2 X 2 matrix, and 
g is the single-site propagator: 

g = N - 1  2 G(io,,  k ) .  
k 

Here, the effective medium propagator is given by G(iw, , k )  = ( Gi'( io , ,  k )  - 
Z(io,))-'. After the limit Eka +. is taken in (2.9), we obtain 

Z = (;; (2.10) 

Then, we can write explicitly 

where Zf(iwn) is determined by the reduced condition 
gf(iw,)Zi(ion) = c - 1 (2.12a) 
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with 
1 1 r2 V2 

N k  
gf(iwn> = - 2 Gf(io,, k )  = 1 -  

io ,  - E, - Zf [ 2D(iw, - - &) 

11 - D)(iw, - Ef - E,) - r2V2 
( ion  + D)(iw, - Ef - Zf) - r2V2 

(2.12b) 

where Log means the principal value of the logarithm. 

condition of free energy minimum with respect to r 
The parameters rand A are determined by two self-consistency equations. One is the 

and the other is the constraint (2.3) 

2 T  
- - 2 (?,(io,, , k )  + r2 = 1. 
c N  nk 

(2.13) 

(2.14) 

As shown in [7], the fundamental set of equations (2.12a), (2.13), and (2.14) for 
determining &, r, and A ,  smoothly and naturally interpolates two mean field theories 
for the Anderson impurity and the Anderson lattice. 

Electric conductivity is calculated by the Kubo formula for the isotropic system 

- E $ a u 2 ( k ) T r ( G R ( ~ , k ) G A ( ~  - o , k ) )  
0 N k o  

(2.15) 

where e is the charge on an electron,@) = l/(exp(x/T) +1), GR(&, k)  = G(E + i s ,  k ) ,  
andG*(E, k)  = G(E - i s ,  k ) .  Itisnot necessarytoincludethevertexcorrectionin(2.15), 
because it is zero in the single-site CPA [ 5 ] .  At T = 0, the static conductivity is given by 

e2 1 
a(0) = --E u 2 ( k )  Tr(GR(O, k)G*(O, k ) ) .  

3 n N  k 
(2.16) 

Using the dispersion relation of the lower band 

~ ? - ( k )  = &[&k + Ef + Re &(o) - v(&k - Ef - Re &(o))’ + 4r2V2] (2.17) 

and assuming &k = k2/2m - D,  m being the mass of the conduction electrons, we obtain 

Here,wehaveusedthenotationCf(0) = Zf(O + is). Putting(2.11) and(2.18)into(2.16), 
we get 

E: + ( E ,  + Re &(O))* + (Im 2f(0))2 + 2r2V2 
X (2.19) 

[&k(Ef + Re Cf(0)) - r2V2]* + [&k(Im cf(0))l2 * 

Resistivity is given by the inverse of a(0): p = l/a(O). 
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With the help of forms of the dilute Ce concentration case 

N iw, - 

r2 V 2  

- r2V2 
iw, - Ef - - 2 

1 
iw, - &k G,(io,, k )  = + c r 2 ~ 2  [(io, - Ek>* (iw, - E, - 

(2.20a) 

(2.206) 
and 

N iw, - .sP) 
Y 2  v2 

A@,, k )  = crV (io,  - E ~ )  (iw,, - Ef - - 2 
we calculate the single-impurity resistivity as 

1 24mD A 2  
c-0 c e 2 n  E!  + A 2  

where A = nr2V2/2D is the resonance width. 

po l im-p = - 

(2.20c) 

(2.21) 

3. Numerical results and discussion 

Results are mainly reported for parameters D = 2 x lo4 K, V = 2500 K, and Ef = 
3700 K. Variation of Ef within 2000 K G Ef 6 15 000 K does not change essential features 
of the solutions. 

r 

Ce concentration Ce concentraticm 

Figure 1. Ce concentration dependence of the 
mean field r .  

Figure 2. Electric resistivity as a function of the 
Ce concentration c. The full curve is for the cur- 
rent CPA result. The broken curve denotes the 
experimentally observed Nordheim law, p = 
poc(l - c), where po is the single-impurity 
resistivity. 

In figure 1, we present the concentration dependence of Y .  It varies almost linearly. 
Variation of r with respect to c seems to be stronger than that in [7] ,  although similar 
magnitudes of parameters are assumed. This may be due to the difference in the number 
of degrees of freedom of the conduction electrons. As the effective f level Ef has 
the magnitude of the Kondo temperature TK at all the concentrations, A. is almost 
independent of c: A. = Ef. 

The electric resistivity p is calculated via (2.19) and is shown in figure 2 by the full 
curve. It is scaled by the single-impurity resistivity po. The experimentally observed 
Nordheim law, p = poc(l - c), is represented by the broken curve for comparison. A 
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positive gradient at c = 0 is common to both curves. With increasing c, the two curves 
deviate from each other. The full curve has a maximum at about c = 0.3. It decreases 
suddenly at c > 0.3. The two curves are separated to a remarkable degree at high 
concentrations. 

We point out that the maximum value of p is close to that of the Nordheim law, 
0 . 2 5 ~ ~ .  This may be because the single-site scattering process still plays a significant role 
in the alloy system. The development of mutual interference among magnetic ions with 
increasing concentration results in the crossover from the dilute Kondo system to the 
dense Kondo system. Finally, the Kondo lattice state is realised by developing complete 
coherence among magnetic ions. 

We cannot show the Nordheim law starting from the CPA condition (2 .12~) .  The 
reason for this is that it violates the dual symmetry [5]  by including the approximation 
Eka + =. The concentration, c = 0.3, where p has a maximum, is very close to that of 
the Yoshimori-Kasai result [4]. This may be afi intrinsic feature of the formalism of the 
single-site CPA, even though the approximation schemes for strong correlation among f 
electrons are different. It would be necessary to formulate the Anderson alloy system 
using the many-site CPA in order to describe the above-mentioned inter-site interference 
better and to overcome that defect of the single-site CPA. This problem needs further 
research. 

We have assumed the site-independent mean field parameters rand A. This is a valid 
approximation in the formalism of the single-site CPA; all lattice sites are equivalent and 
multiple scatterings among magnetic ions are neglected. Inclusion of site dependence 
might be necessary when the formalism is extended to the many-site CPA. Another 
method of treating the site dependence is numerical diagonalisation of a finite-size mean 
fieid Hamiltonian. Sample averaging enables us to check the validity of the CPA. The 
progress of future research in this direction will also be of interest. 
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